

Pollutant Removal Efficiencies of Self-Converted Dry Detention Ponds in Baltimore County, MD

Robert A. Owen¹, Nicole A. Hartig², Colin Hill¹, Michael Pieper¹, Ryan E. Casey², David R. Ownby²

¹KCl Technologies, Inc. 936 Ridgebrook Rd, Sparks Glenco, MD 21152 ²Urban Environmental Biogeochemistry Laboratory Towson University, 8000 York Rd., Towson, MD 21252

The FLUX32 uses a Ratio

loads based on EMCs and annual discharge.

Rainfall loads were added to

Rainfall volume was calculated

by using rain gauge data along

with pond footprint area. Eight (8) rain collections were

analyzed throughout the year

for pollutants TSS, TP and TN.

baseflow influent through one

inlet which was stored by the

could attribute to the higher

this control site

facility. This baseflow storage

than expected reductions from

MC-Control had episodic

pond influent at each site.

Estimate methods to calculate

Inlet (

—Inlet B

Outle

Inlet A Inlet B

Outlet

INTRODUCTION

- The EPA developed the Chesapeake Bay TMDL (Total Maximum Daily Load) for priority pollutants: Nitrogen, Phosphorus and Sediment in 2010 [1].
- Maryland Department of the Environment (MDE) currently gives no reduction of pollutant load to dry detention or dry extended detention ponds for the EPA's TMDL pollutants [2].
- Dry detention pond BMP's were originally designed and installed to provide quantity
- control with little to no water quality treatment of stormwater.

 Previous studies have indicated that dry detention ponds can provide increased removal
- efficiencies than are currently being credited by MDE [3].This study compares the pollutant removal efficiencies of standard dry detention ponds
- and dry detention ponds that have self-converted to ponds with wetland characteristics (soils and vegetation).

OVERVIEW

Goals

- Better understand the pollutant load removal efficiencies of dry detention ponds that have self-converted to wetlands.
- Acquire data to potentially revise dry detention pond removal efficiency assumptions.
 Methods
- Three (3) self-converted (study) ponds and three (3) control ponds were selected following the guidance of the Urban Stormwater BMP Performance Monitoring Manual [4].
- Water Quality sampling was performed during eight (8) storm events spread over the course of 12 months at each monitoring location.
- Course of 12 months at each monthing location.
 During storm events, samples were taken from each inlet/outlet location representing the rising limb, peak and falling limb of the storm hydrograph. Discharge levels were recorded during sample collections and at 5-10 minute intervals during storm flow. Samples were preserved on ice and taken to laboratory for analysis.
- Water samples were analyzed for Total Suspended Solids (TSS), Total Nitrogen (TN) Total Kjehdahl Nitrogen (TKN), Nitrate/Nitrite Nitrogen, Total Phosphorus (TP), Orthophosphorus and Total Dissolved Solids (TDS). Continuous discharge was monitored at each site using In-Situ Rugged TROLL® 100/200 data loggers paired with flow restriction devices (i.e., weirs, orflices).
- · Continuous rain data was also collected using automated Onset RG3 rain gauges.

Table 1: Site specific parameters

Facility	Code	BMP Type	Inlets	Drainage Area	Land Use	Pond Bottom	Pond Footprint (acres)	Wetland (acres)	Percent	Impervious surface (acres)	Percent
Study Ponds											
Glyndon Square	GS	Dry Pond	1	5.72	Comm	0.37	0.92	0.2	62%	3.43	59%
Hunt Ridge	HR	Dry Pond	2	20.60	Res	0.50	1.19	0.02	4%	5.75	28%
Worthington	WO	Dry Pond	1	63.39	Res	0.48	0.98	0.4	81%	8.28	13%
Control Ponds											
McCormick	MC	Dry Pond	2	8.56	Ind	0.11	0.32	0	0.00%	6.07	71%
College Hills	CH	Dry Pond	1	8.00	Res	0.08	0.25	0	0.00%	2.64	33%
Fields of Harvest	FH	Dry Pond	1	7.20	Res	0.37	1.04	0	0.00%	0.91	13%

Fig. 1: Thelmar weir used at MC

Fig. 2: Stainless Steel Compound Weir used at MC Outlet.

- Evaluation
- Flow records were compared to rainfall data to ensure accurate volumes.
- Event Mean Concentrations (EMC) were calculated for each storm in mg/L.
- We used continuous flow records and EMCs to calculate pollutant loads (lbs/yr) at each site using FLUX32 software [5].
- Nonparametric testing (Wilcoxon-sign rank and Kolmogorov-Smirnov) were used to evaluate statistical significance between influent and effluent EMCs at each facility.

Fig. 3: Cumulative distribution plots of TSS, TP and TN at HR-Study and MC-Control facilities.

Table 2: Event EMC comparison. Data are non-normally distributed, thus nonparametric Wilcoxon-sign rank and Kolmogrov-Smirnov tests were performed. Wilcoxon-sign rank shows influent and effluent concentrations are significantly different for priority pollutants at HR-Study, while at MC-Control, only TSS was found to be significantly different. Kolmogorov-Smirnov test results indicate a statistical significance between sample distributions only at HR-Study for TP.

RESULTS – LOAD REDUCTIONS (lbs/yr)

HYDROGRAPH ANALYSIS

2.00

2.50

£ 2.00

McCormick Storm #1 8/12/14

peak and falling limb times and volumes. Discharge amounts are highly dependent on preceding conditions: precipitation amount and intensity, drainage area and percent impervious.

CONCLUSIONS

- A comparison of influent and effluent loads shows load reductions for all priority pollutants at both the control site and study site. Although load reductions were observed, effluent concentrations were not significantly reduced across all sites and for all parameters.
- Hunt Ridge pond bottom is only 4% converted wetland which may explain why there are only small differences in nutrient mitigation when compared to McCormick. We would expect higher nutrient removal rates at Glyndon Square and Worthington because they have a greater wetland area.
- McCormick (control) and Hunt Ridge (study) are just two of the six ponds that are being evaluated. At this time we cannot make any definitive conclusions until the other four ponds have been analyzed.
- It is apparent however, that there are quantifiable reductions taking place in dry and self-converted dry detention ponds contrary to MDE Waste Load Allocations [1].
- For Consideration:
- Continuing this study for another year would increase sampling size which will help reduce error or outlier storm data.

REFERENCES and ACKNOWLEDGEMENTS							
[1] USEPA, 2010 [2] MDE, 2014 [3] Koch et al., 2014	[4] USEPA, 2009 [5] USACE						
Funded by Baltimore County De	partment of Environmental Protection and Sustainability						